Glass transition and aging in dense suspensions of thermosensitive microgel particles.
نویسندگان
چکیده
We report a thermosensitive microgel suspension that can be tuned reversibly between the glass state at low temperature and the liquid state at high temperature. Unlike hard spheres, we find that the glass transition for these suspensions is governed by both the volume fraction and the softness of the particles, where softer suspensions form a glass at higher effective volume fractions. In the glass state, these suspensions show aging where the relaxation times increase linearly with age, irrespective of the degree of particle softness. This relaxation scaling is in contrast with hard sphere behavior but consistent with the soft glassy rheology model.
منابع مشابه
Aging in dense suspensions of soft thermosensitive microgel particles studied with particle-tracking microrheology.
Using particle tracking microrheology, we studied the glass transition in dense suspensions of thermosensitive microgel particles. These suspensions can be tuned reversibly between the glass state at low temperature and the liquid state at high temperature. In the glass state, the ensemble averaged mean squared displacements (MSDs) of added fluorescent tracer particles depend on the age of the ...
متن کامل[hal-00589262, v1] Spatially heterogeneous dynamics in a thermosensitive soft suspension before and after the glass transition
The microscopic dynamics and aging of a soft thermosensitive suspension was investigated by looking at the thermal fluctuations of tracers in the suspension. Below and above the glass transition, the dense microgel particles suspension was found to develop an heterogeneous dynamics, featured by a non Gaussian Probability Distribution Function (PDF) of the probes’ displacements, with an exponent...
متن کاملRelationship between particle elasticity, glass fragility, and structural relaxation in dense microgel suspensions.
"Fragile" glassy materials, which include most polymeric materials and organic liquids, exhibit a steep and super-Arrhenius dependence of relaxation time with temperature upon the glass transition and have been extensively studied. Yet, a full understanding of strong glass formers that exhibit an Arrhenius dependence on temperature is still lacking. In this work, we have investigated the glassy...
متن کاملTheory of Thermodynamic Stresses in Colloidal Dispersions at the Glass Transition
We discuss the nonlinear rheology of dense colloidal dispersions at the glass transition. A first principles approach starting with interacting Brownian particles in given arbitrary homogeneous (incompressible) flow neglecting hydrodynamic interactions is sketched. It e.g. explains steady state flow curves for finite shear rates measured in dense suspensions of thermosensitive core-shell partic...
متن کاملDisentangling glass and jamming physics in the rheology of soft materials
The shear rheology of soft particle systems becomes complex at large density because crowding effects may induce a glass transition for Brownian particles or a jamming transition for non-Brownian systems. Here we successfully explore the hypothesis that the shear stress contributions from glass and jamming physics are ‘additive’. We show that the experimental flow curves measured in a large var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 101 23 شماره
صفحات -
تاریخ انتشار 2008